Keyword

EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > ANIMALS/INVERTEBRATES > CNIDARIANS > ANTHOZOANS/HEXACORALS > SEA ANEMONES

9 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 9 / 9
  • Accompanying excel spreadsheet details the DNA samples taken and venom glands obtained and associated date/location/depth collection site data. Each specimen will be DNA barcoded using the diagnostic 600bp region of the mitochondrial COI gene and sequences lodged on GenBank. DNA barcoding will aid in evaluating the extent of cephalopod biodiversity including revealing cryptic species and phylogeographic structure. Confirmation of species identities is also essential as glands from multiple individuals will be required for detailed proteomic analysis of the proteins produced by the octopus posterior salivary glands. The chemical composition of the secretions will be determined through the application of multidisciplinary techniques, including cDNA library construction, mass spectrometry, molecular modelling and bioactivity testing. The studies will commence in 2008 and run for several years, being the major element in a PhD project run through Dr. Fry's laboratory. Data_Format Excel file with the following columns: Sample ID Diagnosis Description Other Ref Gland Storage Tissue Tissue Storage Voucher Preservation Images Order Family Genus Species Location Site Depth (start-stop) Latitude Longitude Date Time (UT) Capture Event Other Information

  • Metadata record for data from ASAC Project 2691 See the link below for public details on this project. Contaminants may persist in marine sediments and be re-suspended during storms or by the activity of animals. This project will assess the impact of contaminated sediments on plants and animals that live directly above the sediment. Rocky-reef organisms form a large component of Antarctica's biodiversity and include algae as well as filter feeding animals such as sponges, lace corals, and fanworms. Many of these plants and animals live on boulders embedded within sediments. Information on the response of individuals, populations and communities to contamination will be used to develop sediment quality guidelines appropriate for the protection of the Antarctic environment. The toxicity of aqueous metals and metal-contaminated resuspended sediment to the spirorbid polychaete Spirorbis nordenskjoldi Ehlers, 1900 was assessed in assays conducted during the 2005/6 and 2006/7 field seasons. A more detailed description of the design of experiments and the methods used can be found in Hill et al, 2009. Spirorbids were exposed to aqueous solutions of copper, lead and zinc singularly, and in mixtures. Spirorbids were also exposed to resuspended metal-spiked sediments. Spirorbids attached to the brown alga Desmarestia sp were collected from Beall Island, Windmill Islands, East Antarctica, a clean site located approximately 2 km from Casey Station. Algae and animals were kept in the aquarium facility on station, in seawater maintained at 1 C and a 12-h light:dark photoperiod. Seawater was constantly aerated and changed every 5 to 6 d. Spirorbids were used within two weeks of their collection and fed once per week with plankton. Spirorbids were removed from the surface of algal blades 24 h before the start of a test, and allowed to recover in a constant-temperature chamber (CTC) at 0.5 C. Immediately before the start of tests, spirorbids were examined, and only healthy individuals were selected for tests. Spirorbids were determined to be healthy if their tentacular crown (fan) was extended and retracted quickly in response to stimuli. The download file contains further information on the data.

  • Metadata record for data from ASAC Project 2792 See the link below for public details on this project. Australia's Census of Antarctic Marine Life project. This project is a part of the international "Census of Antarctic Marine Life" (CAML) which is to be conducted during the International Polar Year. It is a collaborative contribution by Australia and France to understand the biodiversity of the oceans surrounding Antarctica, with particular emphasis on the fishes of the eastern part of the Australian Antarctic Territory. The biodiversity data, when added to that obtained by all other nations participating in the CAML, will serve as a robust reference for future examinations of the health of the Southern Ocean, and assist in the conservation and management of the region. 2007/2008 Season A. Plankton 1. The impact of climate change on the plankton. The pelagic ecosystem in the Southern Ocean has taken the brunt of human impact in the region and there is evidence that it is already responding to the effects of global climate change. Plankton is particularly sensitive to climate change and change in their biodiversity is expected to have serious ramifications through the rest of the ecosystem including the survival of higher predators. Some species are adapted to cold waters of Antarctic where some are supposedly cosmopolitan. Which will survive global warming? For how long will there be an Antarctic marine ecosystem? 2. Consequences of environmental change driven by past and current exploitation of living resources in the region, e.g. current scale fish and krill fisheries, fishery by-catch species, recovery of whales and seals. 3. "Ecosystem services" - The role of Southern Ocean plankton as source of human food (krill fishery or other) carbon draw down/mediation, bio-climate feedback though dimethyl sulphide production, bioproducts, sensitive indicators of ocean health, and foundation of the Antarctic marine ecosystem - no plankton, no ecosystem. B. Fish 1. What is the composition of the epipelagic, mesopelagic and benthic ichthyofaunas between the Antarctic Divergence and the coast at Dumont d'Urville? 2. How does the physical and biological structure of the water column, conditions of ice-cover and bottom topography influence the composition and distribution of these ichthyofaunas? 3. What changes in the community structure of the benthic ichthyofauna as a result from the passage of large icebergs? C. Benthos 1. What are the ecological and historical factors affecting benthic diversity? 2. How will benthic communities respond to change? We do not know how sensitive the Antarctic benthic communities are to global climate change, or to localised environmental change as seen in the Antarctic peninsula area, or to the impacts of increased trawling. We have no benchmark to compare the effects of change, although the effects of iceberg scouring and rate of recovery/re-colonisation will serve as a useful analogy for trawling perturbation. 3. What are the links between Antarctic and other faunas? This includes benthic-pelagic coupling, the benthos as a foraging zone for higher predators, and through the Antarctic Circumpolar Current - connections with other southern continents. Field sampling for this project was undertaken in the 2007/08 season, commencing in December and finishing in February 2008. Consequently, sample processing has only been underway for one or two months for plankton and pelagic fish samples. The demersal fish and benthic samples have only recently arrived at the National Natural History Museum (MNHN) in Paris ready for distribution to taxonomists and analysts. However, key CEAMARC collaborators who attended the recent post-field season CEAMARC workshop, Calvi April 2008, agreed that the use of three vessels for the field programme, instead of one ship as originally proposed, more than met expectations should sufficiently address all the objectives. Specifically, we have collected a substantial number of samples with sufficient sampling intensity and resolution to set the required benchmark of biodiversity in the survey for the pelagic, mesobathypelagic and benthic environments. This biodiversity benchmark will allow us to: - Compare changes in biodiversity with future CAML surveys and also with past surveys - Define legacy sites in the survey area for future CAML surveys and interim annual or biennial monitoring programmes to continuing the effects of climate change - Which species are most likely to be affected by climate change and those most likely to survive - Contribute to models looking at long term changes in species composition, ecosystem structure and function, survivorship of key species, effects of global warming, ocean acidification, and impacts on ecosystem service - Studies of the impact of trawling and iceberg scouring on the benthic and demersal communities - Compare pelagic, demersal and benthic communities in the survey area with those in the other CAML survey areas around Antarctica Sufficient samples of plankton, fish and benthos were also collected for genetic and molecular analyses to improve our taxonomic knowledge and address the CAML objective on understanding species radiation. Taken from the 2008-2009 Progress Report: Public summary of the season progress: This project is a part of the international "Census of Antarctic Marine Life" (CAML) conducted during International Polar Year. It is a collaborative contribution by Australia, France, Japan and Belgium to understand the biodiversity of Antarctic waters, with particular emphasis on plankton, fish and benthos of eastern Antarctica. In 2007/08, three ships surveyed this area with a range of traditional and modern sampling gear. The biodiversity data from this survey will be added to other CAML projects to serve as a robust reference for future examinations of the health of the Southern Ocean, and assist in its conservation and management.

  • A total of 701 still images were analysed from 10 transects on the Sabrina Coast continental shelf. Imagery was collected from the RVIB Nathaniel B Palmer (NBP 14-02, 29 January - 16 March 2014) across a greater than 3000 km2 area. A 'yoyo' camera, with downward facing digital still and video cameras mounted within a tubular steel frame, was deployed on a coaxial cable to image the seafloor. The Ocean Imaging Systems DSC 10000 digital still camera (10.2 megapixel, 20 mm, Nikon D-80 camera) was contained within titanium housing. Camera settings were: F-8, focus 1.9 m, ASA-400. An Ocean Imaging Systems 3831 Strobe (200 W-S) was positioned 1m from the camera at an angle of 26 degrees from vertical. A Model 494 bottom contact switch triggered the camera and strobe at 2.5m above the sea floor, imaging ~ 4.8m2 of sea floor. Parallel laser beams (10 cm separation) provided a reference scale for the images. Transects were conducted at a ship's speed of ~1 knot. Still images were characterised for main taxonomic groups and sediment properties based on the CATAMI scheme of Althaus et al. 2015.

  • Untreated, macerated wastewater effluent has been discharged to the sea at Davis Station since 2005, when the old wastewater treatment infrastructure was removed. This environmental assessment was instigated to guide the choice of the most suitable wastewater treatment facility at Davis. The assessment will support decisions that enable Australia to meet the standards set for the discharge of wastewaters in Antarctica in national legislation (Waste Management Regulations of the Antarctic Treaty Environmental Protection Act - ATEP) and to meet international commitments (the Madrid Protocol) and to meet Australia's aspirations to be a leader in Antarctic environmental protection. The overall objective was to provide environmental information in support of an operational infrastructure project to upgrade wastewater treatment at Davis. This information is required to ensure that the upgrade satisfies national legislation (ATEP/Waste Management Regulations), international commitments (the Madrid Protocol) and maintain the AAD's status as an international leader in environmental management. The specific objectives were to: 1. Wastewater properties: Determine the properties of discharged wastewater (contaminant levels, toxicity, microbiological hazards) as the basis for recommendations on the required level of treatment and provide further consideration of what might constitute adequate dilution and dispersal for discharge to the nearshore marine environment 2. Dispersal and dilution characteristics of marine environment: Assess the dispersing characteristics of the immediate nearshore marine environment in the vicinity of Davis Station to determine whether conditions at the existing site of effluent discharge are adequate to meet the ATEP requirement of initial dilution and rapid dispersal. 3. Environmental impacts: Describe the nature and extent of impacts to the marine environment associated with present wastewater discharge practices at Davis and determine whether wastewater discharge practices have adversely affected the local environment. 4. Evaluate treatment options: Evaluate the different levels of treatment required to mitigate and/or prevent various environmental impacts and reduce environmental risks.

  • Project Objectives 1) To describe trophic relationships in near shore marine benthic ecosystems of East Antarctica and determine the importance of environmental forces (such as sea ice and primary production) to the structure of food webs and biological interactions in benthic assemblages. 2) To determine how marine benthic food webs in East Antarctica respond to local scale disturbances (such as sewage outfalls and abandoned waste disposal sites) and develop predictive models of the influence of local human activities on trophic relationships. Collections of organisms from coastal ecosystems around Casey and Davis stations were made between 2006/07 and 2010/11.

  • Project Objectives 1) To describe trophic relationships in near shore marine benthic ecosystems of East Antarctica and determine the importance of environmental forces (such as sea ice and primary production) to the structure of food webs and biological interactions in benthic assemblages. 2) To determine how marine benthic food webs in East Antarctica respond to local scale disturbances (such as sewage outfalls and abandoned waste disposal sites) and develop predictive models of the influence of local human activities on trophic relationships. 3) To develop predictive models for the potential effects of global climate change on the trophic structure and function of near shore marine benthic assemblages and determine the sensitivity of Antarctic near shore ecosystems as sentinels of climate change. 4) To measure toxicity of organic contaminants to Antarctic marine benthic invertebrates, determine concentrations in upper trophic level fauna and to model the risk of bioaccumulation of organic contaminants (from local and global sources) in near shore marine benthic food webs in East Antarctica. Collections of organisms from coastal ecosystems around Casey and Davis stations were made between 2006/07 and 2010/11. These samples have been used in a variety of ways to examine trophic interactions in Antarctic coastal ecosystems. Methods include stable isotope analysis, diet and gut contents DNA analysis, analysis of POPs (persistent organic pollutants) and the impacts of local disturbances on food webs.

  • A survey of the epibenthic fauna of hard-substrata was made around Casey Station, using a camera mounted on a frame to take photoquadrats. A nested sampling design was used with several spatial scales. At each location there were two sites, approximately 50-100 m apart. At each site there were three by 15 m long transects, approximately 5 m apart. On each transect there were 2 plots, 5 m long by 2 m wide. Six photoquadrats were taken in each plot. This metadata record describes one component of this survey, photoquadrats taken in flat or gently sloping rocky areas, where the bottom consisted of flat bedrock, gravel or cobbles. A separate survey was done in and around boulders and boulder fields. One of the aims of this survey was to determine if there is any evidence of human impacts in these assemblages. There were several control and several potentially impacted locations. The data have yet to be analysed. Also links to ASAC 1100.

  • A survey of the epibenthic fauna of hard-substrata was made around Casey Station, using a camera mounted on a frame to take photoquadrats. A nested sampling design was used with several spatial scales. At each location there were two sites, approximately 50-100 m apart. At each site there were three by 15 m long transects, approximately 5 m apart. On each transect there were 2 plots, 5 m long by 2 m wide. Six photoquadrats were taken in each plot. This metadata record describes one component of this survey, photoquadrats taken in and around boulders and boulder fields. One of the aims of this survey was to determine if there is any evidence of human impacts in these assemblages. There were several control and several potentially impacted locations. The data have yet to be analysed. Also links to ASAC 1100.